
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-02-3318

Approved for public release;
distribution is unlimited.

Title: Exploring Advanced Architectures using Performance Prediction

Author(s):

Darren J. Kerbyson
Harvey J. Wasserman
Adolfy Hoisie

Submitted to:

Innovative Architecture for Future Generation High-Performance
Processors and Systems, IWIA’02, IEEE Computer Society Press

Exploring Advanced Architectures using Performance Prediction

Darren J. Kerbyson, Harvey J. Wasserman, Adolfy Hoisie
Parallel Architectures and Performance Team, CCS-3,

Los Alamos National Laboratory, NM 87545
djk@lanl.gov

Abstract

In this work we show how by the examination of the
key characteristics of an application, analytical
performance models can be formed. These models are
parameterized in terms of computational and
communication performances of an individual system and
can be used to explore achievable performance of an
application prior to system availability. Two applications
are considered: an adaptive mesh refinement code on
structured meshes, and an Sn transport code on
unstructured meshes. These are representative of part of
the ASCI workload. One of the models is utilized to
validate the performance of a Compaq Alpha-server ES45
supercomputing system being built at Los Alamos, and
expected to grow to 30Tera-flops peak performance in the
next year. In addition, the models are used to explore the
achievable performance on hypothesized future systems
with increased peak computation and communication
performance.

1. Introduction

The design and implementation of high-performance
systems is a highly complex problem requiring
knowledge of many factors. The peak performance of a
system results from the underlying hardware architecture
including processor design, memory hierarchy, inter-
processor, communication system, and their interaction.
Moreover, the achievable performance is dependent upon
the workload that the system is to be used for, and
specifically how this workload utilizes the resources
within the system. Thus optimizing the peak performance
of a system component is only valuable if it has an
associated impact on the achievable performance of the
workload. Performance analysis is required in order to
ascertain the impact on performance resulting from
architectural evolution and innovation.

Performance modeling is a key approach that can
provide information on the expected performance of a

workload given a certain architecture configuration. It is
useful throughout a system life-cycle: starting at design
when no system is available for measurement, in
procurement for the comparison of systems, through to
implementation and installation, and to examine the
effects of updating a system over time. At each point the
performance model should provide an expectation of the
achievable performance with a reasonable fidelity. When
considering tera-scale systems, a large investment is
required throughout the life-cycle and thus performance
modeling should be a requirement.

At Los Alamos, there are several performance
modeling activities underway that range from detailed
simulations that require compute intensive resources to
evaluate models [1], through to analytically based
performance prediction which can be evaluated rapidly
[4,6,7]. In this work we will consider analytically based
approaches due to the need to explore different
architectural scenarios with reasonable accuracy and time
constraints. These approaches do not require a lengthy
simulation design or evaluation process.

The approach that we take is application centric. This
involves the understanding of the processing flow in the
application, the key data structures, and how they use and
are mapped to the available resources. From this a
performance model is constructed that encapsulates its
key performance characteristics. The aim of the model is
to provide insight. By keeping the model as general as
possible whilst not sacrificing accuracy, it may be used to
explore the possible achievable performance in new
situations – both in terms of hardware systems and in
terms of code modifications. This approach has been
successfully used on an adaptive mesh code [6] and a
structured mesh transport code [4]. In this work we show
how by the examination of the key characteristics of an
application analytical performance models can be formed.
Two applications are considered, the first is SAGE – an
adaptive mesh refinement code which is representative of
some of the ASCI workload. The second is Tycho which
performs an Sn transport calculation on unstructured
meshes. Both applications are described in Section 3.

SAGE has been used as an important component
during the installation of a Compaq Alphaserver system at
Los Alamos which is expected to grow to 30Tera-flops
peak performance. It will be shown in Section 5 that a
model can provide an expectation of performance to
which actual measurements should be compared. From
the experience gained during installation there are many
factors in such large scale systems that may not initially
function ideally and need to be debugged and rectified.
Performance models help to identify when the observed
performance does not match the expected achievable
performance.

We also show how a performance model can add
insight into the possible achievable performance on
hypothesized future systems. By considering possible
performance improvements in the communication
network and computational capabilities of the system, we
examine the possible performance improvements that can
be achieved by the applications prior to system
availability. Thus is one of the main benefits of
developing performance models – to be able to explore
performance scenarios and to add insight into the
achievable performance.

2. Performance Modeling

Goals of performance studies vary, typically
depending on the stage of implementation of the
application codes and hardware systems. For instance
from a software perspective in the early application
development stages it may be appropriate to compare
alternative design strategies and to recognize their impact
on performance in advance of implementation. From a
system perspective, it is important to understand the effect
that architectural decisions will have on the achievable
performance of the workload that the system will to be
used for.

A performance model is required in order to explore
the possible achievable performance that will result in
application or system evolution and innovation. There are
two main components that need to be considered in order
to obtain a model of performance:

System Characteristics – This includes computational
aspects (processor clocks, functional units etc.), the
memory hierarchy (cache configuration, memory bus
speeds etc.), node configuration (processors per node,
shared resources etc.), inter-processor communication
(latency, bandwidth, topology), and I/O capabilities.
Workload Characteristics – This includes processing
flow, the data structures, their use and mapping to the
system resources, their frequency or use, and their
potential for resource contention etc.

For modularity and model re-use, the characteristics
of the system should ideally be described, and values

obtained, independently of any application. Similarly the
description of the characteristics of any workload should
be described independently of specific systems. Thus,
once a model for particular system has been developed, it
can be used to examine its performance on a multitude of
applications. Similarly, the performance of an application
can be compared across systems without any alteration to
the application model. This modular approach of
hardware and software model separation has been taken in
a number of modeling activities include the PACE system
[8] for high performance computing, and also INDY [10]
for e-commerce based applications.

Hardware and software performance characteristics
can be described using a scripting language, which are
becoming known generically as Performance
Specification Languages (PSL). These can be compiled
down into “executable” models which can remain
parameterized in a similar way to the actual application.
However, current description languages have limitations.
They must be flexible in order to describe novel
architectural factors which are not present in current
systems, be able to describe the characteristics of the
workload, and must be able to utilize individual models of
system resources which in themselves can quite complex
(e.g. [3]).

The workload can be described in a number of ways
ranging from statistical behavior of a set of applications
through to a detailed understanding of individual
applications. The latter is more of a concern to us given
that many of the ASCI applications can use 1000’s of
processors for a long duration.

The approach we take is thus application centric. It
involves the understanding the processing flow in the
application, the key data structures, how they use and are
mapped to the available resources, and also its scaling
behavior. A performance model of the application is
constructed from this understanding. The aim is to keep
the model of the application as general as possible but
parameterized in terms of its key characteristics.

There are several ways in which a model can be
constructed and evaluated. One such approach is to obtain
a trace of the computation/communication pattern that
occurs at run-time. By effectively replaying the trace and
costing the time for individual events using hardware
specific models, an extrapolation can be made to a new
system. This is a detailed evaluation with a potentially
high accuracy but loses generality – it is specific to a
problem and processor configuration. Such an approach is
taken by Dimemas [2].

Our view is that a model should be able to provide
insight into the performance of the application on
available as well as future systems with reasonable
accuracy. Hardware characteristics should not be part of
the application model but rather be contained within a
component model and be available for use. For instance a

component model for inter-processor communication may
be parameterized in terms of the message size. The actual
model may take on the form of a simple linear analytical
expression in terms of latency and bandwidth, or be more
complex. Component models may use measurements
made by micro-benchmarks, or specified by other means.

An application performance model needs to be
validated against measurements made on one or more
systems for one or more of its configurations (or data
sets). Once a model has been validated it can be used to
explore performance and to provide insight in new
performance scenarios.

In the following section we detail the salient
characteristics of two applications which lead to the
formation of a performance model for each. In Section 4,
we detail the resource characteristics of a Compaq Alpha-
server ES45 supercomputer system. Both application and
resource models are used in combination in order to
explore achievable performance in Section 5.

3. Application Performance Characteristics

Two applications are considered here which exhibit
different performance characteristics. The first is an
Adaptive Mesh Refinement (AMR) application known as
SAGE. The second is an unstructured mesh application
known as Tycho. Both applications are under
development at Los Alamos National Laboratory.

In order to develop a performance model of each
application, the key processing and scaling characteristics
need to be fully analyzed – these are described separately
for each code below.

3.1. SAGE – A Structured Mesh AMR Code

SAGE (SAIC's Adaptive Grid Eulerian hydrocode) is a
multidimensional (1D, 2D, and 3D), multimaterial,
Eulerian hydrodynamics code with adaptive mesh
refinement (AMR). It comes from the Los Alamos
National Laboratory Crestone project, whose goal is the
investigation of continuous adaptive Eulerian techniques
to stockpile stewardship problems. SAGE represents a
large class of production ASCI applications at Los
Alamos that routinely run on 1,000’s of processors for
months at a time.

Adaptive mesh refinement operations are performed
on cells as necessary at the end of each cycle in the
processing. Each cell at the top most level (level 0) can be
considered as root node of an oct-tree of cells in lower
levels. For example, the shock-wave indicated in the 3-D
spatial domain in Figure 1 by the solid line may cause
cells close to it to be split into smaller cells. In this
example, a cell at level 0 is not refined, while a cell at
level n is a domain 8n times smaller.

Level 0 Level 1

Level 2 Level 3

Figure 1. Example of Adaptive Mesh Refinement
at multiple levels

3.1.1 Key Performance Characteristics of SAGE. The
key characteristics of SAGE are:

Data decomposition – SAGE uses a spatial discretization
of the physical domain utilizing Cartesian grids. This
spatial domain is partitioned across processors in sub-
grids such that the first processor is assigned the first E
cells in the grid (indexed in dimension order – X,Y,Z),
and so on. This results in a 1-D slab partitioning across
processors. The problem size grows proportionally with
the number of processors in the normal operational mode
of SAGE, i.e. a weak-scaling characteristic.
Processing flow – the processing proceeds in cycles. In
each cycle there are a number of stages that involve the
three operations of: one (or more) data gathers to obtain a
copy of remote neighbor data, computation on each of the
gathered cells, and one (or more) scatter operations to
update data on remote processors.
AMR and load-balancing – at the end of each cycle,
each cell can either be split into smaller 2x2x2 cells,
combined with its neighbors to form a single larger cell,
or remain unchanged. A load-balancing operation takes
place if any processor contains 10% more cells than the
average cells across all processors.

The 1-D slab decomposition leads to two important
factors that influence the achievable performance. Firstly,
the amount of communication increases as the number of
processors increases. This is due to the boundary surface
of a sub-domain in a 1-D decomposition scaling at the 2/3

power of the number of processors. Secondly, since the
number of cells per processor is constant, there is a point
at which the sub-domain will be only a single cell wide,
and also when a single slab is mapped to more than one
processor. At this point the gather/scatter communications
will not be just between adjacent processors but rather
between processors a certain distance apart. This distance
is actually equal to the number of processors sharing a
single slab. This distance will be reflected in the number
of simultaneous out-of-node communications that will
contend for the communication channel. The maximum
number of processes contending will be equal to the
number of processors within a node. Full details on the
characteristic scaling behavior of SAGE is given in [6].

3.1.2 Performance Model of SAGE. The performance
model of SAGE consists of three main components:
computation, memory contention within a node, and inter-
node communication. The run-time for one cycle of the
code can be modeled as:

() () ()
() ()

() ()
()PMT

DETAT

DEPTPT
DEPTDETEPT

i

i

cmload

icombineidivide

iGScommallreduce

imemconicompcycle

,

.

,,
.,.,,,,

++
++
++=cmMAD

where

Tcomp(E.Di) - the computation time
TGScomm(P,E,Di) - the gather/scatter communication time
Tallreduce(P) - the allreduce communication time
Tmemcon(P,E.Di) - the memory contention that occurs

between PEs within a node
Tdivide(Ai) - the time to divide cells in iteration i
Tcombine(E.Di) - the time to combine cells in iteration i
Tload(Mcmi, P) - the time to perform the load-balancing

The model consists of an additive sum of

communication and computation components since the
local gather/scatter communications effectively
synchronize the processing across processors.

The gather and scatter communication time is the
time taken to provide boundary information by processors
owning boundary data. This is related to the 1-D slab
decomposition and the number of processors that share a
single slab. The size of the boundary data in each
direction, Surfacex, Surfacey, SurfaceZ, are calculated as a
function of the number of cells per processor and the
processor count. The frequency of this operation was
measured to be 160 floating point and 17 integer gathers
and scatters in total per cycle. The contention on the
communication channel per node is also modeled – this is
taken to be a multiplicative factor on the communication
time representing the number of processors performing
simultaneous out of node communications. This factor is

also a function of the number of cells per processor, and
the processor count.

The memory contention represents the extra time
required per cycle when multiple processors within a node
contend for memory. This can be measured by
considering different configurations of processors for the
same problem – for instance using all processors with a
node, or using 1 processor in each of PSMP nodes (PSMP is
the number of processors per node). The difference in
execution time is approximately the additional time due to
memory contention (assuming the communication time is
small).

The AMR operation is modeled from a number of
time histories of values defined on a cycle by cycle basis
which can be measured for a particular calculation. These
time histories represent the level 0 cell division factor (D),
the maximum number of cells added over all processor by
the division process (A), and the maximum number of
cells moved from a single node (Mcm) in the load
balancing operation.

Table 1. SAGE model input parameters (M –
measured, S – specified)

Category Type Parameter Description

Application S E Cells per processor

 M D, A, Mcm AMR Time histories

Mapping S Surfacex,
Surfacey,
SurfaceZ

Surface size (in cells) of the
sub-grid on each processor (in
3-D)

System S P Number of processors

 S PSMP Processors per SMP box

 S CL Communication Links / node

 M Lc(S),
Bc(S)

Latencies and Bandwidths
achieved in one direction on
bi-directional communication

 M Tcomp(E) Sequential cycle time of
SAGE on E cells

 M Tmem(P) Memory contention

The parameters used in this model are listed in Table

1 according to whether they are application, system, or
mapping parameters. Further details on the formation of
this model can be found in [6].

3.2. Tycho – An Unstructured Mesh Code

Tycho is currently in development at Los Alamos for
exploring Sn transport calculations on unstructured
meshes [9]. It is estimated that deterministic particle
transport on structured meshes accounts for over 50% of
the execution time of many realistic simulations on
current DOE systems.

The processing in Tycho corresponds to a wavefront
technique using an iterative sweeping method. A
wavefront of processing propagates across the mesh in all
sweep directions contained within a discrete ordinates set.
The calculation results in a ‘software pipeline’ of
computation in each of sweep direction [4], and results in
several interesting performance characteristics. The
investigation into the performance of this calculation on
structured meshes has been examined in some detail [9].

Each sweep direction results in a specific cell
processing order – determined by the mesh geometry. An
example is shown for two sweep directions, Ω , in Figure
2 on a small 2-D unstructured mesh. A total of 5 steps of
the processing are shown. The edge of the sweep
corresponds to a wavefront and is shown as black. It
requires the grey cells to have been processed in previous
steps. The same operation can take place in three
dimensions resulting in a ‘wavefront surface’.

0 1 2 3 4Ω

Figure 2. Example sweep processing on a small
unstructured mesh

An example 2-D partitioning of an irregular mesh is
shown in Figure 3. The communications between
processors are shown by arrows, and a simplified
propagation of the sweep is shown by the grey lines. The
sweep starts in the top left corner and propagates to the
lower right. Each grey line indicates the progress of the
sweep in each step in this propagation. Tycho actually
enables all directions to commence simultaneously.

The sweep processing is also blocked – a maximum
number of cell-angle pairs that can be processed per step
is specified by the MCPS input. This blocking helps to
alleviate the starvation in the direction of the sweeps
However some starvation will remain on processors in the
pipeline due to insufficient boundary data being received
to enable the processing of MCPS cells.

To minimize processor starvation cells are assigned a
priority. Cells with high priority are processed first. The
key in this is the priority assignment. In general processor
boundary cells will be of high priority (these need to be
processed in order that cell fluxes can travel down the
pipeline), and cells needing to be processed prior to
boundary cells are given an even higher priority. This
approach attempts to maximize cell boundary production
– different schemes have been analyzed using Tycho [9].

Ω

PE

Figure 3. Example partitioning and sweep flow
on a 2D unstructured mesh

3.2.1. Key Performance Characteristics of Tycho. The
key processing characteristics in Tycho are:

Data Decomposition – the mesh in Tycho is partitioned
in 3-D using Metis [5]. This partitioner aims to produce
equally sized partitions whilst minimizing boundaries, i.e.
keeping the work across processors constant whilst
minimizing the communication time. In an idealized
mesh, all partitions would have the same number of cells,
Ep, be hexahedral in shape with minimum surface-to-
volume ratio and have six nearest neighbors.
Pipeline Processing - All sweeps in the discrete ordinate
set commence at the start of a Tycho iteration. The first
elements processed are those that lie on the boundary with
no inflows in the sweep direction. Thus sweeps generally
start from the surface of the mesh and work their way to
the centre before propagating out the opposite side. There
are two components in this, namely the propagation of the
sweep from one side of the mesh to the other (the so
called pipeline length), and the total work that is done on
each mesh partition. In an idealized mesh, the pipeline
length is PL = (Px-1)+(Py-1)+(Pz-1) where Px, Py and Pz
are the number of processors in each of the three
dimensions respectively. Also the total work done on each
mesh partition is equal to: Wp = Ep*| Ω |, where | Ω |
denotes the number of sweep directions.
Process Starvation - Each step in Tycho consists of three
stages: process cells at the top of the priority queue, send
boundary data to downstream PEs, and receive boundary
data from upstream PEs. The maximum amount of work
done in a step on each PE is determined by the input
parameter MCPS (MaxCellsPerStep). The processing
situation is made complicated by the dependence between
upstream and downstream cells in the sweep directions.
There will almost always be a degree of inefficiency in
this operation and processors will be starved of work
waiting for the results from other PEs. This inefficiency

can be quantified by using the metric of Parallel
Computational Efficiency (PCE) [9]:

()()∑
=

=
steps

i
p

p

piwork

W
PCE

#

1

,max

The PCE represents the fraction of the maximum cells
that are processed over all steps in an iteration. Each mesh
will have a specific value of PCE on each processor
configuration. However, in the general case a value of the
PCE has to be assumed – possibly based on experience
from prior meshes. This assumption can be inaccurate
reflecting the abstraction that a model needs in order to be
generally applicable.
Strong Scaling – Tycho exhibits a strong scaling
characteristic, the input mesh size is constant and thus
partitions become smaller on larger processor counts. The
number of cells mapped to each processor thus changes
on different processor counts, and can also effect the
performance obtained from the memory hierarchy. For
instance when a mesh partition becomes small enough to
fit in cache the performance will be better then if main
memory is utilized.

3.2.2 A Performance Model of Tycho. In this model we
assume that the three stages of a Tycho step are distinct
and do not overlap – those of computation, blocking
sends, and blocking receives. This is a simplification
which allows an analytical model to be formulated but
also incorporates some degree of inaccuracy. The time for
an iteration of Tycho can be given by:

() () ()()PNTETWorkStepsPNT BCommPElemstepiter ,.6..#, +=

where

#Steps – number of steps in an iteration,
Workstep – number of cells processed in a step
TElem(x) – time to process a cell-angle pair given a

total of x cells mapped to a processor.
TBComm(N,P) – time to communicate boundary information

on a mesh of size N, on P processors.

The first term in this model represents the
computation and the second term communication. The
number of steps is assumed to be given by:

() () ()111
*

*
−+−+−+

 Ω
= zyx PPP

PCEMCPS

Ep
steps

where Ep is the number of cells per PE (assumed constant
at N/P), MCPS is the MaxCellPerStep Tycho input
parameter, | Ω | is the number of sweep directions, and
PCE is the Parallel Computational Efficiency as described
earlier. Px, Py and Pz are the number of processors in the
logical x, y, and z dimensions respectively. The first part

of this equation represents the number of work steps and
the second part the pipeline length.

The work on each PE in each step is assumed a
constant, and taken as the minimum of MCPS and the
total number of cell-angle pairs on a processor. The
communications are also assumed constant – six neighbor
communications per processor per step, of size EP

2/3
(assumes an idealized cube).

These assumptions will generally lead to an under-
prediction by the model, but it has been found to be
reasonably accurate with an average error of 9% over
many mesh-processor configurations. The parameters
used in this model are listed in Table 2. Note that most of
the system parameters are common with those for SAGE.

Table 2. Input parameters to the Tycho
performance model (M : measured, S : specified)

Category Type Parameter Description

Application S N Total cells in the mesh

 S | Ω | Number of sweep directions

 S MCPS Max cells processed per step

 S PCE Parallel compute Efficiency

System S P Number of processors

 S PSMP Processors per SMP box

 S CL Communication Links / node

 M Lc(S),
Bc(S)

Latencies and Bandwidths
achieved in one direction on
bi-directional communication

 M TElem(EP) Time to process a cell given
EP cells per processor

4. The Compaq Alpha-Server ES45

The system considered here consists of 512 Compaq
Alpha-Server ES45 nodes currently installed at Los
Alamos National Laboratory. This system is expected to
grow to 30Teraflops peak performance over the next year.
Each node contains 4 Alpha Ev68 processors running at
1GHz which are internally connected using two 2GB/s
memory buses to 16GB of main memory. Each processor
has an 8MB unified level 2 cache, and 64KB L1 data
cache. The Alpha processor has a peak performance of 2
floating point operations per cycle. Thus current
installation has a peak performance of 4Tflops/s.

Nodes are interconnected using the Quadrics QsNet
high-performance network. This network boasts high-
performance communication with a typical MPI latency
of 5µs and a throughput of up to 340MB/s in one
direction (detailed performance figures are discussed in
Section 4.1). The Quadrics network contains two
components – the Elan network interface card, and the

Elite switch. The Elan/Elite components are used to
construct a quaternary fat-tree topology. Example fat-tree
networks of a dimension 2 and 3 are shown in Figure 4. A
quaternary fat-tree of dimension n is composed of 4n
processing nodes and n.4n-1 switches interconnected as a
delta network. Each Elite switch contains an internal 16x8
full crossbar. A detailed description of the Quadrics
network can be found in [11].

In order to implement a single rail (a single fat-tree
network) a single Elan PCI interface card is used per node
in addition to a number of Elite switch boxes. The Elite
switches are packaged in 128-way boxes. The first level
of boxes implements the first 3 levels of the fat-tree and
consists of 64 down and 64 up ports. The second level of
boxes implements a further two levels of the fat-tree
resulting a possible system of size 1024 nodes. Further
levels may be used to implement larger systems.

Figure 4. Network topologies for a dimension 2,
and 3 quaternary fat-tree

The system being installed at Los Alamos actually
contains two rails of the Quadrics network, i.e. two
parallel independent networks using two Elan cards per
node, and two complete sets of Elite switches.

4.1. System Performance Characteristics

The performance of the system is considered in
isolation from any specific workload where ever possible.
These characteristics include: computational, memory,
intra-node and inter-node communication, and I/O
performance. We consider here the characteristics that are
relevant to the two applications described in Section 4.
These characteristics are listed in both Table 3 and 4.

Table 3 includes general characteristics of the system
along with application performance parameters which
were measured on a single node. Table 4 includes detail
of point-to-point communication performance as observed
on a multi-node system using micro-benchmarks. A linear
model for the communication time is assumed which uses
the latency (Lc) and Bandwidth (Bc) of the communication
network for varying sizes of messages (S). These are
listed for two configurations of the ES45 internal PCI bus
– namely for both a 33MHz and a 66MHz bus. As will be
seen in Section 5, both configurations were used as input
to the SAGE performance model.

Table 3. General system, and application specific
performance parameters for the Compaq ES45.

Category Parameter Value

System P 2048

(General) PSMP 4

 CL 2

SAGE Tcomp(E) (s) 0.38

 Tmem(P) (s)

>
=

28.4
28.1

P
P

Tycho TElem(EP)
(µs) ()

≤
<<−

≥

8000.3

168004.398.0

160.7

P

PP

P

E

KEELn

KE

Table 4. Inter-node communication performance
parameters for the Compaq ES45

Parameter 33 MHz PCI bus 66 MHz PCI bus

Lc(S) (µs)

>
≤≤

<

5124.17

5126470.9

6400.9

S

S

S

>
≤≤

<

5128.13
5126444.6

6410.6

S
S

S

1/Bc(S) (ns)

>
≤≤

<

5128.12

512648.17

640.0

S

S

S

>
≤≤

<

51230.8
512642.12

640.0

S
S

S

5. Use of the Performance Models

The performance models for both SAGE and Tycho
have been previously validated on large scale systems
including several ASCI machines and the CRAY T3E.
Typical prediction error for SAGE was found to be 5%,
and that for Tycho was 9%. This validation enables the
models to be used in new scenarios to explore
performance and to provide insight.

In this section we consider two separate performance
cases. The first is the use of SAGE to validate the
performance that was observed during the installation of
the 512 node Compaq System at Los Alamos. The second
case explores the performance of both SAGE and Tycho
that may be achieved on future large-scale systems with
improved computation and communication performance.

5.1. System Installation

The SAGE model as described in Section 3, was used
to provide an expectation of the performance of the
Compaq Alpha-Sever ES45 system (as described in
Section 4) prior to installation. The model required a
number of measurements, as listed in Tables 3 and 4,
which were obtained on a small 8 node system.

Two performance scenarios were considered prior to
the installation of the system. These differed only in the
speed of the internal PCI bus of the Compaq ES45 nodes,
which were initially set at 33MHz, and later upgraded to
66MHz. The speed of the PCI bus determines the
available bandwidth between the Quadrics NIC and the
processor memory and thus can have a significant impact
on the performance of any parallel application.

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

33MHz PCI, 1 Rail

66MHz PCI, 1 Rail

Figure 5. Performance prediction of SAGE on a

Compaq ES45 system with QsNet

The expected performance of the system is shown in
Figure 5 for both PCI bus speeds. The performance model
predicts the cycle time of SAGE. The cycle time would be
constant across all processor configurations if an idealized
speedup was obtained. This is due to the weak scaling use
of SAGE. It can be seen that when using an ES45 with a
66MHz PCI bus in comparison to a 33MHz bus the
performance of SAGE is improved by at most 20%. The
cycle time is predicted to plateau at above 512 processors
– this is the point at which all gather/scatter
communications are out-of-node leading to a maximum
contention for the NIC.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

Measured (Sept 9th 01)
Measured (Oct 2nd 01)
Measured (Oct 24th 01)

Prediction (33MHz PCI Bus)

Figure 6. Measured performance of SAGE
compared with predictions (33MHz PCI Bus)

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

Measured (Jan 4th 02)

Measured (Feb 2nd 02)
Measured (Apr 20th 02)

Prediction (66MHz PCI Bus)

Figure 7. Measured performance of SAGE

compared with predictions (66MHz PCI Bus)

The performance of SAGE was measured at several
points after the initial installation of the machine had
taken place. The obtained performance is shown in Figure
6 on several dates. The difference in performance
between the test runs can be attributed to the
identification and debugging of faults during the
installation process. As one would expect with a large-
scale system everything does not work ideally from the
first system boot. Several faults were identified including
some poorly performing inter-node connections, and also
several software issues which lead to an O/S upgrade.

After the installation debugging process it can be
seen in Figure 6 that the system achieved the expected
performance predicted in advance by the model. A similar
process was followed when the nodes were upgraded to a
66MHz PCI Bus. During this process it was found that
some nodes reverted back to their original 33Mhz status
and thus effected achievable application performance.
Several measurements were again taken during this
upgrade with the expected performance available from the
model. These are compared in Figure 7.

It can be seen from both Figure 6 and 7 that it was
only after all the upgrades and system debugging had
taken place that the measurements matched the expected
performance. Without the model, it would have been
difficult to ascertain if the application was achieving a
reasonable performance or not. When differences
occurred between the model and measurements, further
low-level kernel tests were executed on the computational
nodes, and the communication network to help identify
the source of the problem.

5.2. Future Systems

The performance models for SAGE and Tycho can
be used to explore the possible performance that may be
observed on future systems. In the following analysis we
assume that the system architecture is similar to that of
the Compaq Alpha-server ES45 in that there are a number
of nodes connected by a Fat-tree topology. The nodes are
also assumed to contain four processors. The performance
of each application is examined on this hypothesized
system when assuming that each of the computational
performance, the network bandwidth, and the latency
have improved in performance by a factor of eight. This is
done be altering the system input parameters to the model
as listed in Tables 3 and 4. For instance to improve the
latency by a factor of 8, the values for Lc(s) were reduced.

Figure 8 shows the performance of SAGE in terms of
the time to process one cycle when the performance of
individual system components are changed. In addition,
the performance improvement is shown in Figure 9 along
with the improvement that could be obtained by simply
doubling the number of processors used (with no sub-
system performance improvements).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

ES45 (Current System)

Bandw idth x8
Latency x8

Compute/Memory x8

Figure 8. Performance prediction of SAGE when
considering individual improvements in sub-

system performance.

0

1

2

3

4

5

6

7

8

1 10 100 1000 10000
PEs

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
F

ac
to

r

Nodes x2

Bandw idth x8
Latency x8

Compute/Memory x8

Figure 9. Performance improvement of SAGE
with changes in sub-system performance

It can be seen that SAGE is actually
computation/memory bound on the lower number of
processors. Thus, improving just the performance of a
node will give the greatest performance improvement in
this region. On larger number of processors the greatest
performance improvement could be gained by simply
doubling the number of processors. This is due to the
plateau in the cycle time occurring on larger processor
counts.

0.01

0.1

1

10

100

1000

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

ES40 (Current System)

Bandw idth x8
Latency x8

Compute/Memory x8

Figure 10. Performance prediction of Tycho
when considering individual improvements in

sub-system performance.

0

1

2

3

4

5

6

7

8

1 10 100 1000 10000
PEs

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
F

ac
to

r

Nodes x2

Bandw idth x8
Latency x8

Compute/Memory x8

Figure 11. Performance improvement of Tycho
with changes in sub-system performance

A similar analysis is depicted in Figures 10 and 11
for Tycho. This is performed for a mesh with 1,000,000
cells, and assumes that a PCE of 0.9 is achievable in all
cases. The form of the curves in Figure 10 is different to
that of SAGE due to its strong scaling characteristic.
Tycho remains compute bound throughout. As can be
seen in Figure 11, the best performance improvement
would be gained by an increase in node computational
performance. These curves do not directly state the
efficiency of the calculation – on larger processor counts
the efficiency actually decreases. It can be seen that using

more than 4000 processors is not beneficial as it does not
result in any further performance improvement. This is
due to the pipeline length dominating the performance on
this mesh size. The pipeline length increases as the
number of processors increase.

These studies of the expected performance on
possible future system illustrate the power of performance
modeling. They can be used to explore these performance
scenarios giving a good indication of the performance that
should be achievable by each application. It should be
noted however, that the performance improvements vary
from application to application. If all elements of the
workload to which a system is to be used for are known in
advance, the information from many performance models
can be combined to give quantitative information on the
expected performance of the full workload. Such
information may be useful in system architecture designs.

6. Conclusions

We believe that performance modeling is the key to
building performance engineered applications and
architectures. Models adds insight into the performance of
current systems, reveal bottlenecks and show where
tuning efforts would be most effective. They also allow
the performance on future systems to be explored. The
latter is important for both application and system
architecture design as well as for the procurement of
supercomputer architectures

In this work we have described how the key
characteristics of two applications were combined into
performance models.

We have shown that an accurate performance model
can be used to validate the performance of a system
during its installation. The performance model of one of
the ASCI codes, SAGE, has been utilized here to provide
an expectation of the runtime on the system prior to its
availability. When installing a new system there are often
a number of refinements that need to be done in both the
software system, and hardware components, before the
machine operates at the expected level of performance.
The performance model for SAGE has been shown to be
of great use in this process. The model has effectively
provided the performance and scalability baseline for the
system performance on a realistic workload. Initial system
testing showed that its performance was almost 50% less
than expected. After several system refinements and
upgrades over a number of months, the achieved
performance matched exactly the expectation provided by
the model. Thus performance models can be used to
validate system performance.

In addition the performance models have been used
to explore the possible achievable performance on future,
hypothesized, architectures. This demonstrates an
important use for developing models – that of providing a

means to explore performance scenarios without the need
of implementation.

7. Acknowledgements

Los Alamos National Laboratory is operated by the
University of California for the National Nuclear Security
Administration of the US Department of Energy.

8. References

[1] K. Davis, K. Berkbigler, B. Bush et.al. “An Approach to
Extreme-Scale Simulation of Novel Architectures”, SC2001,
Denver, November 2001.

[2] S. Girona, J. Labarta, R.M. Badia, “Validation of Dimemas
communication model for MPI collective operations”, in Proc.
EuroPVM/MPI’2000, Balatonfured, Hungary, September 2000.

[3] J.S. Harper, D.J. Kerbyson, G.R. Nudd, “Analytical
Modeling of Set-Associative Cache Behavior”, IEEE
Transactions on Computers, 48(10), October 1999, pp. 1009-
1024.

[4] A. Hoisie, O. Lubeck, H. Wasserman, “Performance and
Scalability Analysis of Teraflop-Scale Parallel Architectures
using Multidimensional Wavefront Applications”, Int. J. of High
Performance Computing Applications, Vol. 14, No. 4, Winter
2000, pp. 330-346.

[5] G. Karypis, V. Kumar, “METIS 4.0: Unstructured Graph
Partitioning and Sparse Matrix Ordering System”, Technical
Report, Department of Computer Science, University of
Minnesota, 1998.

[6] D.J. Kerbyson, H.J. Alme, A. Hoisie et. al, “Predictive
Performance and Scalability Modeling of a Large-Scale
Application”, in Proc. SC2001, Denver, November 2001.

[7] D.J. Kerbyson, S.D. Pautz, A. Hoisie, “Predictive Modeling
of Parallel Sn Sweeps on Unstructured Meshes”, Los Alamos
National Laboratory report LA-UR-02-2662, May 2002.

[8] G.R. Nudd, D.J. Kerbyson et.al. “PACE:A Toolset for the
Performance Prediction of Parallel and Distributed Systems”,
Int. J. of of High Performance Computing Applications, Vol. 14,
No. 3, Fall 2000, pp. 228-251.

[9] S.D. Pautz, “An Algorithm for Parallel Sn Sweeps on
Unstructures Meshes”, J. Nuclear Science and Engineering,
Vol. 140, 2002, pp. 111-136.

[10] E. Papaefstathiou, “Design of Performance Technology
Infrastructure to Support the Construction of Responsive
Software”, in: Proc of 2nd ACM Int. Workshop on Software and
Performance, Ottawa, Canada, September 2000, pp. 96-104.

[11] F. Petrini, W.C. Feng, A. Hoisie, S. Coll, E. Frachtenberg,
“The Quadrics Network: High-Performance Clustering
Technology”, IEEE Micro, 22(1), 2002, pp. 46-57.

